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S U M M A R Y  
The indefinite Z-transform technique is proposed. The method for solving linear difference equations using indefinite 
Z-transforms is compared with the methods employing the infinite one-sided Z-transforms and the finite Z-transforms. 
The distinct advantage of the method presented in this paper is that the desired solutions are obtained without employ- 
ing standard inverse Z-transform techniques, such as the convolution theorem, or extensive Z-transform tables. All 
that is needed here for the derivations of the desired solutions is the application of Cramer's rule for the solution of 
simultaneous algebraic equations using the characteristic values. Therefore, this technique could be also readily used 
by those who have not studied the familiar Z-transform technique. 

1. Introduction 

Problems that are characterized by ordinary linear difference equations with constant coef- 
ficients and known initial conditions are commonly solved using the familiar, infinite Z- 
transforms [1]. This approach is particularly suitable because the initial conditions are in- 
corporated into the transformed set of difference equations and the desired solutions are derived 
directly upon inversion of the Z-transforms. The infinite Z-transform techniques can also be 
used to derive the solutions of boundary-value problems characterized by linear difference 
equations such as discrete electrostatic field problems and ladder type networks. In these cases, 
however, it is necessary to assume a set of initial boundary conditions and only after determin- 
ing the inverse transforms, are the unknown initial conditions evaluated by imposing the as yet 
unused final boundary conditions. These values for the initial conditions are finally substituted 
into the expressions for the inverse transforms. 

The general theory of finite Z-transforms advanced by Higgins and Oesterlei [2], [3] has 
more recently been employed to derive the solution to the boundary value problems character- 
ized by linear difference equations. Using these finite transforms it is demonstrated that it is 
possible to incorporate both the initial and final boundary conditions into the transformed 
difference equations. In this case, before the inverse transforms are evaluated, it is necessary 
to determine a complementary set of boundary conditions that are introduced in the course of 
transforming the given difference equations. This complementary set of boundary conditions 
are determined by imposing the conditions for the analyticity of finite Z-transforms. Finally, 
through the use of a new set of tables for finite Z-transforms, (or by inspection of the terms of 
the finite Z-transform and the use of familiar infinite Z-transform tables), the desired solutions 
may be derived. 

It is to be noted that both the techniques considered above require (a), the determination of 
unspecified boundary conditions and (b) the determination of the respective inverse transforms. 
Thus, it is not possible to yield an overall judgment as to the preference of one technique 
over the other. For instance while the finite transform technique is somewhat more elegant, it 
may well be that it also requires the solution of more undetermined boundary conditions, than 
would be required if the infinite Z-transform techniques were used. However, if one is only 
interested in determining the values of the dependent variables at the boundaries, the finite 
transform technique may be preferred, since no inverse transforms are sought. 

In this paper, indefinite Z-transform techniques are proposed. They are employed to derive 
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solutions of difference equations with either final or initial boundary conditions. For the case 
in which all the initial boundary conditions are known, the solution is determined directly by 
imposing the analyticity conditions for the indefinite Z-transforms, without actually seeking 
out the inverse transform through the use of tables or by other familiar techniques. 

For the case in which some of the initial boundary conditions are unknown, and in their 
place certain final boundary conditions are specified, one may proceed in one of the two 
following ways. As in the case in which the infinite Z-transforms are employed, initial conditions 
are assumed. The solutions in terms of these initial boundary conditions are obtained by re- 
quiring that the indefinite Z-transforms be analytical. The unknown initial boundary conditions 
are finally determined by employing all the remaining unused final boundary conditions. 
Alternatively, one may choose to proceed with the solution (as in the cases when the finite 
Z-transforms are used) by first determining the unknown initial boundary conditions. After 
these are determined, the desired solutions are obtained by imposing the analyticity conditions 
for the indefinite Z-transform. 

Hence, while the indefinite Z-transform technique presented here retains the flexibility 
discussed above in the manner one chooses to determine the unspecified boundary conditions, 
it yields an additional advantage over the earlier methods in that it is not necessary to employ 
standard inversion techniques or extensive infinite Z-transform tables. 

In view of the well-known parallels between the Z-transform techniques for difference 
equations and the Laplace transform techniques for differential equations, it can readily be 
shown that indefinite Laplace transform techniques similar to the indefinite Z-transform 
techniques proposed here, may be devised to solve initial and final boundary value problems 
characterized by linear differential equations. 

A historical survey of various operational calculus and transform techniques used in the 
past to solve problems in electric circuit theory is given by Higgins [-1]. The key to the finite 
and indefinite Laplace and Z-transform techniques is the recognition of the necessary condition 
of the analyticity of these transforms. Various sets of necessary and sufficient conditions for the 
existence of the finite Laplace transform are presented by Doetsch in his treatise on the Laplace 
transform [-4]. 

2. Definition of the Finite and Indefinite Z-Transforms and Their Relationship to the One 
Sided Infinite Z-Transforms 

Let f (n)  be defined over the range n = 0, 1, 2, ... The familiar, one sided infinite Z-transform of 
f (n)  is defined as follows. 

Z [ f ( n ) ]  = F(z) = ~ f (p)z  -p . (2.1) 
p=0  

Let f (n )  be given over the range n=0, 1 .. . . .  N. The finite one sided Z-transform off(n) is 
defined by the following finite sum, 

N 

Zo[ f (n ) ]  = Fo(z) = ~ f (p)z  -p p = O, 1, 2 . . . . .  N .  (2.2) 
p=0  

Like F(z), the definite Z-transform Fo(s) is only a function of the variable z. However, the in- 
definite Z-transform is a function of both z and the variable integer n. It is defined as follows. 

Z , [ f ( n ) ] =  F,(n,z) = ~ ..., . f (p)z  -p n = 0, 1, 2, N (2.3) 
p=0  

Hence, 

f (n)  = z'[F~(n, z ) -  F , ( n -  1, z)] .  

The range of n may be chosen to be finite or infinite depending upon the range of the integer n 
in the problem considered. It is now obvious from the above definitions that 
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F1 (N, z) = Fo (z) . (2.4) 

Furthermore, it can readily be shown that 

ZD[f(n)] = Z [ f ( n ) ]  - ~ f(p)z - p =  Z [ f ( n ) ] - z - ~ N + l ) Z [ f ( n + N + l ) ] .  (2.5) 
N+I 

As a simple application of the above relationships, one can determine FD(z) and FI(n, z) for 
the function f(n) = exp { (ko - cQ n}. The infinite Z-transform for exp { ( ira-  e) n} is 

Z [exp {(ico- e)n} ] = z / ( z -  ei~~ (2.6) 

Thus using (2.5) and (2.6), 

ZD [exp { (iw -- a) n} ] = Z [exp ( (ico -- a) n} ] [1 -- z-  (N +,) e 0o~- ~)(N +,)] 

= (z - z-U e(i~o-,)(N+ 1))/(Z _ elO,- ~). (2.7) 

It is to be noted that while Z [exp { (ko-a)n} ] is singular for z = e ~'~- ~, the expression for 
Z o [exp { (ico-~)n} ] is analytical in the complex z plane except at the origin. The indefinite 
transform may now be obtained by simply substituting the variable integer n for the integer 
N in (2.5) as indicated by (2.4). A large set of finite and indefinite Z-transforms may be 
derived from (2.7) by noting the relationship between the sinusoidal and hyperbolic functions 
and the exponential functions. Also by setting k o - ~ = 0  in (2.7) one obtains directly the 
Z-transform for the unit step function u(n). Another special result that may be deduced 
from (2.5) is the definite (or indefinite) transform of f (n  + 1). Thus noting that Z [ f (n  + 1)] = 
zF (z)-zf(O), it follows that 

Zo [ f (n  + 1)] = Z [ f (n  + 1)] - z -  (n +I)Z [ f (n  + 1 + N + 1)] = zFo(z ) - if(O)+ z-  Nf(N + 1). 

(2.Sa) 

In the same way it can be shown ' tha t  

Zo [ f (n  + 2)] = z 2 FD (z)-- z2f(O)-- i f ( l )  + z -  N + i f (  N + 1) + z -  Nf(N + 2). (2.8b) 

Similarly, to obtain the respective indefinite Z-transforms replace N by n in the above expres- 
sions. 

As a final note in this section, it is easily verified that provided f(n) are bounded functions 
of n, such that If(P)] < B, p = 0, 1, ... n indefinite Z-transforms are bounded functions ofn and z 
except for z = 0, since 

~,of(p)z-P < B = [zl-P= B( { z { - [ z l - " ) / ( I z ] - l ) .  

3. Demonstration and Comparison of the Z-transform Techniques 

To demonstrate and compare the three transform techniques discussed in this paper, consider 
the following problem characterized by a simple difference equation. 

Aa(n)+ca(n ) = a(n+ 1)-a(n)+ca(n) = O, a(M) = aM, n = 0, 1, 2, . . . .  (3.t) 

in which the range of n is infinite, M is a constant integer, and a M is a given constant. Consider, 
at first, the infinite Z-transform technique. Let Z[a(n)] = A(z) and assume the unknown 
initial condition a(0)=ao. The Z-transform of (3.1) yields the following equation. 

A (z) = aoz / ( z -  1 + c ) .  (3.2) 

The inverse transform is found in tables for Z-transforms. Thus, 

a (n) = Z - t  [A (z)] = ao (1 - c)". (3.3) 
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Imposing the unused boundary condition on (3.3) yields 

a o = (1 - c)-MaM . (3.4) 

Thus finally the solution is obtained by substituting (3.4) into (3.3) 

a(n) = aM(1 -- C) "-• �9 (3.5) 

NOW consider the definite transform method. Here define Zo[a(n)] =AD(z) and as above  
a (0) = ao. The definite transform of(3.1) (taking N + 1 = m in 2.8a) yields the following equation. 

Ao (z) = (% z -  a M z -  M + 1)/(Z -- 1 + C) . (3.6) 

Noting that AD(Z) is finite for z = 1 -- c, it is necessary that the nominator in (3.6) vanishes for 
z = 1 - c. Thus 

ao = aM(X-c) -M �9 (3.7) 

The solution may now be derived by inverting (3.6) and using (3.7). Thus, using a table for 
definite Z-transforms or using tables for the infinite transforms in conjunction with (2.5), the 
desired solution is obtained 

Z• 1 lAD(z)] = Zo 1 [aM z {(1 - c)- ~t_ z-M}/(Z_ 1+ C)] = aM(1 -- C)"-~t. (3.8) 

Next, consider the indefinite transform method. Define Z1 [a (n)] = A~(n, z) and a (0)= ao as 
before. The indefinite transform of (3.1) produces the following equation. 

( z -  1 + c)A,(n, z) = (ao z -  a(n + 1)z-").  (3.9) 

By imposing the analyticity condition for A, (n, 1 - c )  and substituting n for n + 1, one obtains 
from (3.9) 

a(n) = ao (1 - c)". (3.10) 

Now, set n = M in (3.9) to determine ao in terms of a~t (3.4). Note  that the desired solution is 
determined in this case without directly seeking the inverse transform of Az(n, z) in tables. 

In the following section, the indefinite transform technique is illustrated by solving the current 
in all the loops of a ladder type network. Such problems are solved in several textbooks using 
the infinite Z-transform techniques [5]. The mode amplitudes in a lumped transmission line 
system with uniform mode coupling and initial conditions are derived in Section 5. 

4. Solution of Linear Difference Equations with Mixed Boundary Conditions and Arbitrary 
Driving Functions 

Consider the N + 1 loop ladder network shown in figure 1. The net enforced EMF in the nth loop, 
e (n), is an arbitrary function of n (not shown in Fig. 1). The series and parallel impedances are 

Figure 1. 

Z~ and Zp respectively. The N + 1 difference equations characterizing the network are 
i(1)=[li(O)-Ype(O) ; f l= I + Yp(Z~+ ZG), Yp= l / Z , ,  (4.1) 

i ( n ) - J i ( n + l ) + i ( n + 2 ) =  - Y , e ( n + l )  ; 6 = 2 +  YvZ~forn=O,  1,2, . . . N - 2 ,  (4.2) 
and 

i ( N - l ) = T i ( N  ) -  Yp e(N) ; 7 = I +  Yp(Z~+ZL) (4.3) 
in which ZG and Z L are the impedances in loops 0 and N respectively. Take the indefinite 
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Z-transform of (4.2) and let I and E be the symbols used here for the indefinite transforms for 
i(n) and e (n) respectively. On collecting like terms one gets, for n = 0, 1, ..., N -  2, 

(! -fiz+ z2) I 

= z(z-6)i(O)+zi(1)-z-"(z-b)i(n+ 1)-z-"i(n+2)- Yp[zE-ze(O)+z-"e(n+ 1)]. (4.4) 

The roots of the characteristic equation, z 2 - 6z + 1 = 0, are 

z l = e  ~ and z 2 = e  - ~ ;  2 c o s h a - 6 .  (4.5) 

Since I is finite for z = z ~ and z = z2, the right-hand side of (4.4) must vanish for z = z 1 and z = z 2. 
Thus 

i(n+l)-i(n+2)e ~ 
= i(0)e("+l)~- i(1)e("+2)~+ Yp[E(n, e~)e("+2)~-e(O)e("+2)~+e(n+ l )e  ~] (4.6a) 

and 
i(n+ 1)-- i(n+2) e -~ 

= i(0)e -("+')~-  i(1)e-("+2)'+ Yv[E(n, e-~)e-("+z)'-e(O)e-("+z)~+e(n+ 1)e- ' ]  .(4.6b) 

Subtract (4.6a) from (4.6b), use (4.1) to eliminate i(1) and substitute n for n + 2 in the resulting 
equation to get the desired solution for i(n) in terms of i(0). 

i(n) - sinhl ~ { i(O)[fl sinh na-sinh(n-1)a] - ~ [E(n, e')e"'- E(n,e-~le - ' ]  }. (4.7a) 

Finally, use (4.3) in conjunction with (4.7a) to solve for i(0). 

i(o) = [ e  (N, e )  e N" (y - e - ' )  - e (N, e - ' )  e -  N" - e ' ) ]  Y ; 2  (4.7b) 
sinh (N - 2) a - (fl + y) sinh (N - 1) a + fly sinh Na 

To derive the solution using the regular Z-transform techniques, set n ~  cc in (4.4) and invert 
the resulting equation. To do this, use Z-transform tables in conjunction with the convolution 
theorem for the inversion of a product of Z-transforms. To eliminate i(0) and i(1) from the 
result, use (4.1) and (4.3) as in the above solution. Note  however, in the solution (4.7), the 
convolution sum is given in closed form. To illuminate this final point further, set 

e(n) = u(n) .  (4.8) 

Thus, using (2.7) (with ion-a  = 0), 

e(,+ 1),_ 1 _ e,,/2 sinh ((n+ 1)a/2) 
e'E(n, e ~) - e ' -  1 sinh(a/2) (4.9) 

The last term in (4.7a) and the nominator in (4.7b) reduce to 

Yp sinh ((n + 1)a/2) sinh (na/2)/sinh (a/2) 
and 

Yp [~ sinh (Na/2) -  sinh ( ( N -  2) a/2) ] sinh ((N + 1) a/Z)/sinh (a/Z). 

Using infinite Z-transform techniques to solve the same problem, the following expressions 
are obtained instead by employing the convolution theorem 

Yv ~ e (p) sinh ( n -  p) 
0 

and 
N 

Yp ~, e (p) [~ sinh ( U -  p) a -  sinh ( U -  1 - p) a ] .  
o 

These expressions can be shown to be identical to the proceeding closed form expressions 
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derived directly using (4.7). Since it is not necessary to resort to standard inverse Z-transform 
techniques to obtain the desired solution, the indefinite Z-transform method is particularly 
useful for solving problems in which the inverse transforms are not commonly found in Z- 
transform tables. 

Finally, it should be noted that if for example, in the network considered in this section, one 
is only interested in determining the currents in the boundary loops, 0 and N, the derivation 
of the solutions using finite Z-transform techniques is preferable to the derivation involving 
the infinite Z-transforms, since in the former case, no inverse transforms are sought. In this 
case the derivations using the finite or indefinite transform techniques are indistinguishable. 

5. Solution of  Coupled Homogeneous  Difference Equations 

The wave amplitudes al (n) and a 2 (n) in a coupled transmission line with lumped parameters 
are characterized by the following difference equations and boundary conditions respectively, 

Aal(n)+ kl, al(n)+k12a2(n) = 0 ] 

Aa2(n)+k21al(n)+k22az(n ) = 0, [ (5.1) 
and 

adO)  = a , o ,  a2(0) = " 2 0 ,  

in which kl,  and k22 are constant propagation coefficients. The uniform coupling coefficients 
are k12 and k21. 

To solve for a l (n) and a2 (n), we first write the indefinite Z-transforms for the above difference 
equation in matrix notation. 

�9 = z (5.2) 

k21 (z -  1,+ k22)J a 2 L a2~ 

Solution of the above equation for the indefinite Z-transforms A~ and A2 yields, 

[ ( z - l + k l l ) ( z - 1 + k 2 2 ) - k , 2 k 2 ,  = 
LAzfl  L -k21  z - - l  +kl lALa2o--az(n)z-"  fl 

(5.3) 
Since the indefinite Z-transforms A ~ and A2 are analytic functions of z, the matrix product on 
the right-hand side of (5.3) must equal the zero column vector for z = z~ and z = z2 ; the roots of 
the characteristic equation for this problem. 

= z 2  = 

where 
kll-t-k22 [ Q kll-k22) 2 1] �89 

- 2 ' fl = 2 + k lzk  2 (5.4) 

Thus on imposing the analyticity conditions for A~ (n, z) one obtains the following equations. 

(z 1 - 1 +k22 ) [aloz] - al(n)] = kt2 [a2oz] -a2(n)] 

(z 2 - 1  + kz2) [azoz"z- a2(n)] = k12 [a2oz~- az(n) ] . (5.5) 

The above algebraic equations may now be solved for al (n) and a2 (n) without employing the 
standard inverse Z-transform techniques. Thus, 

al~ z" z" azo ka2[z"2-z]] ] 
= V 2+ - 5 #  

and 
1220 alo 

a2(n) = ~ f i  { f l [ z "2+z]]+(k , , -~ ) [ z~- z ] ]  } ~ -  k21 [ z ~ - z ] ] .  (5.6) 

Journal of Engineerin9 Math., Vol. 6 (1972) 125-132 



The indefinite Z-transform technique 131 

For the degenerate case, zl =zz = 1 -  e, (fl=0), the solutions may be derived by taking the 
limits of (5.6) as fi~0. However, in order to demonstrate how the analyticity conditions are 
imposed for the cases in which the characteristic equation yields multiple roots, we reconsider 
the expressions for the indefinite transforms as fi~0. Thus for A1 we now have, 

(z- 1 +ot)2A~ = z{z-  1+k22)(alo-al(n)z-")-ka2(a2o-a2(n)z-")} - zF(z, n). (5.7) 

The analyticity conditions for A 1 are now established by equating to zero F (z 1, n) and F' (z~, n) 
(the first two terms of the Taylor expansion of F(z, n) defined in (5.7)). Thus, 

(zl-1+kzz)(al~176 } 
and 

alo + In (zl - 1 + kz2)-zl] al (n)z~ ("+ 1)_ nkl 2a2 (n)z-( "("+ 1) = 0 (5.S) 

These linear algebraic equations can now be solved for al (n) and a2(n). 

and 

a2(n)=z]{azo[1 +2(kll-kzz)Zal 1 -alonkzlz~l}. (5.9) 

Similarly, for the case in which the multiplicity of the roots of the characteristic equation is r, 
to establish the analyticity of the transforms it is necessary to equate to zero the first r terms of 
the appropriate Taylor series expansion. In general, since the order of the set of difference 
equations characterizing the problem is the order of the characteristic equation, there are 
sufficient analyticity conditions to determine all the unknown functions. 

6. Concluding Remarks 

Using the finite Z-transform techniques, the formu~tion of the solution of linear difference 
equations with final boundary conditions is more elegant than the formulation using the 
standard infinite Z-transform techniques since all the boundary conditions are incorporated 
into the transformed equations. However, this is often at the expense of an actual increase in 
intermediate computations. There is, however, a clear advantage in employing indefinite 
Z-transforms, since the solutions are obtained without employing standard techniques for the 
inversion of the transforms such as the use of contour integrals, convolution sums or extensive 
Z-transform tables. This advantage pertains to problems with specified initial conditions 
(where the infinite Z-transforms are employed) as well as to problems with final boundary 
conditions. To use the indefinite Z-transform method it is only necessary to apply Cramer's 
rule for the solution of simultaneous algebraic equations using the characteristic values. 

For problems in which only the values of the dependent variables at the boundaries are 
sought, finite Z-transform techniques are preferable to infinite Z-transform techniques, since 
no inverse transforms are required using finite transform techniques. In this case, the derivations 
of the solution using the finite or indefinite Z-transform techniques are indistinguishable. 

The well-known parallels between the Z-transform techniques for difference equations and 
the Laplace transform techniques for differential equations, indicate that indefinite Laplace 
transform techniques similiar to the indefinite Z-transform techniques presented here, may 
be employed to solve initial and final boundary value problems characterized by linear 
differential equations [6]. 

Finally, Higgins and Oesterlei [2] have demonstrated the use of multiple finite transforms 
in solving problems with two independent variables. It is suggested here that multiple indefinite 
transform techniques may also be employed to solve these problems. 
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